Abstract

Partially substituting Portland cement (PC) with waste brick powder (WBP) is an effective method to reduce environmental pollution. In this paper, the effects of a WBP with low pozzolanic activity on the fresh and hardened properties of blended cement with 0–40% WBP or 50% of WBP+GGBFS (by mass) were studied. Sodium sulphate (SS) (1.5 and 2.5%, related to powder mass) was used to activate the blended cement with 40% WBP or 50% WBP+GGBFS at 20 °C. Results show that the performance of blended cement is decreased with the increase in WBP content since the WBP with low pozzolanic activity mainly contributes to the dilution effect. Binary cement with 10% WBP shows a similar carbonation depth and chloride migration coefficient to PC. Ternary cement with 10% WBP and 40% GGBFS exhibits a slightly lower strength at 90 days and a lower chloride migration coefficient than PC. The SS solution increases the compressive strength at 2 days and decreases the compressive strength at 28 and 90 days. Moreover, the SS solution results in a lower carbonation depth and chloride migration coefficient, except for ternary cement with 10% WBP and 40% GGBFS, which shows a higher carbonation depth at 42 and 68 days. This paper provides a reference for the application of WBP to produce green mortars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call