Abstract

β-Glucans as emerging biopolymer are widely produced by microorganisms in fermentation processes using commercial sugars which make process non-economic. Lignocellulosic substances are inexpensive carbon sources, which could be exploited for sustainable production of β-glucans. In this study, a lignocellulosic material, namely sugarcane straw (SCS) was utilized for the production of extracellular β-glucan by Lasiodiplodia theobromae CCT3966. SCS was subjected to acid and subsequent alkaline pretreatment, followed by enzymatic saccharification using cellulase enzyme. Quantity of 48.65 g/L glucose was released after enzymatic hydrolysis. β-Glucan production was performed by cultivation of fungal strain in SCS hydrolysate at 28 °C and initial culture pH 7. Highest β-glucan yield and productivity of 0.047 gg−1 and 0.014 gL-1h−1, respectively was obtained at 72 h fermentation time. Kinetic study of β-glucan production revealed experimental biosynthesis of β-glucan from SCS hydrolysate followed the trend generated by Logistic and Luedeking-Piret models. Chemical structure of biopolymer produced showed β-glucan constitution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.