Abstract

Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate from selenide and ATP. Characterization of selenophosphate synthetase revealed the determined K(m) value for selenide is far above the optimal concentration needed for growth and approached levels which are toxic. Selenocysteine lyase enzymes, which decompose selenocysteine to elemental selenium (Se(0)) and alanine, were considered as candidates for the control of free selenium levels in vivo. The ability of a lyase protein to generate Se(0) in the proximity of SPS maybe an attractive solution to selenium toxicity as well as the high K(m) value for selenide. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, were characterized. All three proteins exhibit lyase activity on L-cysteine and L-selenocysteine and produce sulfane sulfur, S(0), or Se(0) respectively. Each lyase can effectively mobilize Se(0) from L-selenocysteine for selenophosphate biosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.