Abstract

Here we present a high-throughput, transparent microfluidic device with embedded microwell arrays sandwiched between transparent electrodes made from graphene (at the bottom) and indium tin oxide (at the top) for dielectrophoretic cell trapping and electrical lysis. Graphene suppresses unwanted faradaic reaction effects on the cells and the medium that is typically observed in ITO based electrodes from application of DC field for electrical lysis. This is because graphene is more electrochemically inert than indium tin oxide (ITO) where ITO undergoes reduction–oxidation (redox) reaction in the presence of electrolyte in most standard cell media. This redox process also compromises ITO's electrical properties and optical transparency over multiple use. The presented microfluidic device shows high efficiency for cell trapping and lysis and an electrochemically stable behavior for long operational life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call