Abstract
The utilization of nine dissolved organic phosphorus (DOP) compounds by five bloom-causing phytoplankton species was studied under batch culture conditions. The DOP compounds included were adenosine 5-triphosphate (ATP), adenosine 5-monophosphate (AMP), cytidine 5-monophosphate (CMP), guanosine 5-monophosphate (GMP), uridine 5-monophosphate (UMP), glucose-6-phosphate (G6P), sodium glycerophosphate (GYP), 4-nitrophenyl phosphate (NPP), and triethyl phosphate (TEP), and the phytoplankton taxa were Skeletonema costatum, Prorocentrum micans, Alexandrium tamarense, Chattonella marina, and Heterosigma akashiwo. The four flagellate taxa, P. micans, A. tamarense, C. marina, and H. akashiwo, grew well under various DOP regimes. P. micans and C. marina were the most capable of using DOP compounds, sustaining better growth on a majority of nucleotides (ATP, AMP, CMP, GMP, and UMP) and phosphomonoesters (G6P and GYP) than in inorganic phosphorus (P) controls. A. tamarense and H. akashiwo showed equivalent growth in most organic and inorganic P cultures, while the diatom species, S. costatum, could only utilize AMP and GMP. Furthermore, A. tamarense and C. marina could endure N, P-depleted conditions. Among the nine DOP compounds tested, the nucleotide compounds had the highest nutritional value for algal cell growth, while TEP could not sustain growth as the sole source of P. These results suggest that enhanced DOP utilization and the endurance of nutrient-limitation by harmful flagellate taxa offer their competitive advantages, which may account for the frequent occurrence of their blooms in coastal waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.