Abstract
Sorption of phosphorus (P) onto particulate surfaces significantly influences dissolved P concentrations in aquatic environments. We present results of a study contrasting the sorption behavior of several dissolved organic phosphorus (DOP) compounds and phosphate onto three commonly occurring iron (oxyhydr)oxides (Fe ox): ferrihydrite, goethite, and hematite. The DOP compounds were chosen to represent a range of molecular weights and structures, and include: adenosine triphosphate (ATP), adenosine monophosphate (AMP), glucose-6-phosphate (G6P), and aminoethylphosphonic acid (AEP). All P compounds displayed decreasing sorption as a function of crystallinity of the Fe ox substrate, with ferrihydrite adsorbing the most, hematite the least. In general, maximum sorption density decreased with increasing molecular weight of P compound; sorption of G6P onto goethite and hematite excepted. P compound size and structure, and the nature of the Fe ox substrate all appear to play a role dictating relative sorption capacity. Failure of a simple, 1-step sorption–desorption model to describe the data suggests that P sorption cannot be explained by a simple balance between sorption and desorption. Instead, the data are consistent with a 2-step sorption model consisting of an initial rapid surface sorption, followed by a slow, solid-state diffusion of P from surface sites into particle interiors. Desorption experiments provide additional support for the 2-step sorption model. Without exception, DOP compounds showed less efficient sorption than did orthophosphate. This suggests that in aquatic systems enriched in reactive Fe ox, whether as suspended particulates in the water column or in benthic sediments, DOP bioavailability may exceed that of orthophosphate. Since biological uptake of P from DOP requires enzymatic cleavage of orthophosphate, a system enriched in DOP relative to orthophosphate may impact ecosystem community structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.