Abstract

The operational duration of shaking tea leaves is a critical factor in the manufacture of oolong tea; this duration influences the formation of its flavor and fragrance. The current method to control the duration of fermentation relies on the olfactory sense of tea masters; they monitor the entire process through their olfactory sense, and their experience decides the duration of shaking and setting. Because of this human factor and olfactory fatigue, it is difficult to define an optimum duration of shaking and setting; an inappropriate duration of shaking and setting deteriorates the quality of the tea. In this study, we used metal-oxide-semiconductor gas sensors to establish an electronic nose (E-nose) system and tested its feasibility. This research was divided into two experiments: distinguishing samples at various stages and an on-line experiment. The samples of tea leaves at various stages exhibited large differences in the level of grassy smell. From the experience of practitioners and from previous research, the samples could be categorized into three groups: before the first shaking (BS1), before the shaking group, and after the shaking group. We input the experimental results into a linear discriminant analysis to decrease the dimensions and to classify the samples into various groups. The results show that the smell can also be categorized into three groups. After distinguishing the samples with large differences, we conducted an on-line experiment in a tea factory and tried to monitor the smell variation during the manufacturing process. The results from the E-nose were similar to those of the sense of practitioners, which means that an E-nose has the possibility to replace the sensory function of practitioners in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.