Abstract
In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.