Abstract

Respirometry provides a direct measure of an organism's O2 consumption rate (VO2), which is a significant component of its metabolic rate (energy expenditure). Amongst ants, variations in lifespan between different social castes (such as workers and queens) can be substantial, varying depending to the species. As metabolic rate is higher in short-living species, we aimed to determine how VO2 and longevity may have coevolved within ant casts. Measuring VO2 in such tiny animal models can be challenging, and as a first methodological step, we validate the use of a Clark electrode, initially designed for measuring mitochondrial respiration control pathways, for assessing VO2 in ants within a sealed chamber. This was done by comparing it with stop-flow VO2 and CO2 production, using a traditional indirect calorimetry device. The global aim is to provide a reliable protocol to conduct accurate comparisons of metabolic rates within and among ant species. As expected, using Clark electrode entails high time resolution and revealed that queens and workers exhibited discontinuous respiration, with episodes of apnea lasting up to 20 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.