Abstract
AbstractTo reduce carbon emissions from fossil fuel combustion, United States government agencies, including those in California, initiated aggressive programs to hasten development of utility‐scale solar energy. Much of California's early development of solar energy occurred in deserts and annual grasslands, much of it on public land. Measurement of solar energy's impacts to wildlife has been limited to mortality caused by features of solar facilities, and has yet to include impacts from habitat loss and energy transmission. To estimate species‐specific bird and bat fatality rates and statewide mortality, I reviewed reports of fatality monitoring from 1982 to 2018 at 14 projects, which varied in duration, level of sampling, search interval, search method, and carcass detection trials. Because most monitors performed carcass detection trials using species of birds whose members were larger than birds and bats found as fatalities, I bridged the monitors' onsite trial results to offsite trial results based on the same methods but which also measured detection probabilities across the full range of body sizes of species represented by fatalities. This bridge preserved the project site's effects on detection probabilities while more fully adjusting for the effects of body size. My fatality estimates consistently exceeded those reported. Projected to California's installed capacity of 1,948.8 MW of solar thermal and 12,220 MW of photovoltaic (PV) panels in 2020 (14,168.8 MW total), reported estimates would support an annual statewide fatality estimate of 37,546 birds and 207 bats, whereas I estimated fatalities of 267,732 birds and 11,418 bats. Fatalities/MW/year averaged 11.61 birds and 0.06 bats at PV projects and 64.61 birds and 5.49 bats at solar thermal projects. Fatalities/km/year averaged 113.16 birds and zero bats at generation tie‐ins, and 14.44 birds and 2.56 bats along perimeter fences. Bird fatality rates averaged 3 times higher at PV projects searched by foot rather than car. They were usually biased low by insufficient monitoring duration and by the 22% of fatalities that monitors could not identify to species. I estimated that construction grading for solar projects removed habitat that otherwise would have supported nearly 300,000 birds/year. I recommend that utility‐scale solar energy development be slowed to improve project decision‐making, impacts assessment, fatality monitoring, mitigation efficacy, and oversight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.