Abstract

RNA viruses are the most frequent pathogens responsible for respiratory infections, particularly in pediatric patients. Next-generation sequencing, represented by Illumina sequencing, is one of the most comprehensive methods for identifying pathogens. Nanopore sequencing has been used to identify and analyze pathogens with a shorter sequencing time. In this study, we evaluated the utility of nanopore sequencing for the detection of RNA viruses in bronchoalveolar lavage fluid (BALF) of pediatric patients with respiratory failure. Using the seven BALF samples, we first compared the nanopore and Illumina sequencing results. The nanopore sequencing detected the same RNA viruses as the Illumina sequencing. Subsequently, BALF samples from 24 additional pediatric patients with respiratory failure were analyzed by nanopore sequencing, and RNA viral pathogens were detected in 10 out of 24 patients. Among these 10 patients, nanopore sequencing identified the same viral pathogens as detected by the PCR and viral antigen tests in five patients. Furthermore, additional RNA viral pathogens were detected by nanopore sequencing with high genome coverage in five patients that were not detected by PCR and viral antigen tests. In conclusion, nanopore sequencing could comprehensively detect RNA viral pathogens in BALF samples with equivalent sensitivity and genome coverage as Illumina sequencing. This rapid sequencing platform may be more beneficial for detecting RNA viruses in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.