Abstract

A 53-base pair region on the long arm of chromosome 22 was amplified using PCR with 7-deaza-modified deoxynucleotides. Increased amplification efficiency was achieved by doubling the concentration of the modified deoxynucleotide triphosphates. Incorporation of 7-deaza purines has been previously shown to selectively eliminate fragmentation pathways during gas-phase sequencing of nucleic acids by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation. However, 7-deaza analogs result in significant duplex stability precluding interrogation of the single-stranded species by tandem mass spectrometry. Herein, we demonstrate the use of lambda exonuclease to successfully overcome this problem and are able to obtain single-stranded PCR products containing 7-deaza adenine and guanine nucleobases. Mass accuracy was used as our metric to determine complete incorporation of 7-deaza residues in PCR products>15 kDa; ≤ 3 ppm neutral monoisotopic mass measurement accuracies were routinely achieved. High mass measurement accuracy was obtained using a dual electrospray source and subsequently, using an isotopic fitting algorithm, the best fit between the theoretical and experimental isotopic distributions was determined using a chi-square value. Theoretical isotopic distributions were generated using an average nucleotide ( averatide) chemical formula developed herein which was based on the relative frequencies of AT and GC base pairs in the human genome. Single-stranded PCR products were fragmented using SORI-CID and as expected, cleavage at the 7-deaza modified sites was not observed. Collectively, this integrated approach can facilitate top–down sequencing of PCR products by a variety of tandem mass spectrometry methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call