Abstract

BackgroundThe research aims to assess the effectiveness of artificial intelligence models in predicting the risk level in tulip greenhouses using different varieties. The study was conducted in 2022 in the Almaty region, Panfilov village.ResultsTwo groups of 10 greenhouses each (area 200 m2) were compared: the control group used standard monitoring methods, while the experimental group employed AI-based monitoring. We applied ANOVA, regression analysis, Bootstrap, and correlation analysis to evaluate the impact of factors on the risk level. The results demonstrate a statistically significant reduction in the risk level in the experimental group, where artificial intelligence models were employed, especially the recurrent neural network “Expert-Pro.” A comparison of different tulip varieties revealed differences in their susceptibility to risks. The results provide an opportunity for more effective risk management in greenhouse cultivation.ConclusionsThe high accuracy and sensitivity exhibited by the “Expert-Pro” model underscore its potential to enhance the productivity and resilience of crops. The research findings justify the theoretical significance of applying artificial intelligence in agriculture and its practical applicability for improving risk management efficiency in greenhouse cultivation conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.