Abstract
On our planet, chemical waste increases day after day, the emergence of new types of it, as well as the high level of toxic pollution, the difficulty of daily life, the increase in the psychological state of humans, and other factors all have led to the emergence of many diseases that affect humans, including deadly once like COVID-19 disease. Symptoms may appear on a person, and sometimes they may not; some people may know their condition, and others may neglect their health status due to lack of knowledge that may lead to death, or the disease may be chronic for life. In this regard, the author executes machine learning techniques (Support Vector Machine, C5.0 Decision Tree, K-Nearest Neighbours, and Random Forest) due to their influence in medical sciences to identify the best technique that gives the highest level of accuracy in detecting diseases. Thus, this technique will help to recognise symptoms and diagnose them correctly. This article covers a dataset from the UCI machine learning repository, namely the Wisconsin Breast Cancer dataset, Chronic Kidney disease dataset, Immunotherapy dataset, Cryotherapy dataset, Hepatitis dataset and COVID-19 dataset. In the results section, a comparison is made between the execution of each technique to find out which one is the best and which one is the worst in the performance of analysis related to the dataset of each disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.