Abstract

Fruit quality is an important aspect in determining the consumer preference in the supply chain. Thermal imaging was used to determine different pineapple varieties according to the physicochemical changes of the fruit by means of the deep learning method. Deep learning has gained attention in fruit classification and recognition in unimodal processing. This paper proposes a multimodal data fusion framework for the determination of pineapple quality using deep learning methods based on the feature extraction acquired from thermal imaging. Feature extraction was selected from the thermal images that provided a correlation with the quality attributes of the fruit in developing the deep learning models. Three different types of deep learning architectures, including ResNet, VGG16, and InceptionV3, were built to develop the multimodal data fusion framework for the classification of pineapple varieties based on the concatenation of multiple features extracted by the robust networks. The multimodal data fusion coupled with powerful convolutional neural network architectures can remarkably distinguish different pineapple varieties. The proposed multimodal data fusion framework provides a reliable determination of fruit quality that can improve the recognition accuracy and the model performance up to 0.9687. The effectiveness of multimodal deep learning data fusion and thermal imaging has huge potential in monitoring the real-time determination of physicochemical changes of fruit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.