Abstract
1) ObjectivesPreterm birth caused by preterm labor is one of the major health problems in the world. In this article, we present a new framework for dealing with this problem through the processing of electrohysterographic signals (EHG) that are recorded during labor and pregnancy. The objective in this research is to improve the classification between labor and pregnancy contractions by using a new approach that focuses on the connectivity analysis based on graph parameters, representative of uterine synchronization, and comparing neural network and machine learning methods in order to classify between labor and pregnancy. 2) Material and methodsafter denoising of the 16 EHG signals recorded from pregnant women abdomen, we applied different connectivity methods to obtain connectivity matrices; then by using the graph theory, we extracted some graph parameters from the connectivity matrices; finally, we tested different neural network and machine learning methods on the features obtained from both graph and connectivity methods in order to classify between labor and pregnancy. 3) ResultsThe best results were obtained by using the logistic regression method. We also evidence the power of graph parameters extracted from the connectivity matrices to improve the classification results. 4) ConclusionThe use of graph analysis associated with machine learning methods can be a powerful tool to improve labor and pregnancy classification based on the analysis of EHG signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.