Abstract
1) Introduction: Preterm labor (PL) has globally become the leading cause of death in children under the age of 5 years. One of the most significant keys to preventing preterm labor is its early detection. 2) Objectives: The primary objectives of this study are to address the problem of PL by providing a new approach by analyzing the electrohysterographic (EHG) signals, which are recorded on the mother's abdomen during labor and pregnancy. 3) Methods: The EHG signal reflects the electrical activity that induces the mechanical contraction of the myometrium. Because EHGs are known to be non-stationary signals, and because we anticipate connectivity to alter during contraction (due to electrical diffusion and the mechanotransduction process), we applied the windowing approach on real signals to identify the best windows and the best nodes with the most significant data to be used for classification. The suggested pipeline includes: i) dividing the 16 EHG signals that are recorded from the abdomen of pregnant women in N windows; ii) apply the connectivity matrices on each window; iii) apply the Graph theory-based measures on the connectivity matrices on each window; iv) apply the consensus Matrix on each window in order to retrieve the best windows and the best nodes. Following that, several neural network and machine learning methods are applied to the best windows and best nodes to categorize pregnancy and labor contractions, based on the different input parameters (connectivity method alone, connectivity method plus graph parameters, best nodes, all nodes, best windows, all windows). 4) Results: Results showed that the best nodes are nodes 8, 9, 10, 11, and 12; while the best windows are 2, 4, and 5. The classification results obtained by using only these best nodes are better than when using the whole nodes. The results are always better when using the full burst, whatever the chosen nodes. 5) Conclusion: The windowing approach proved to be an innovative technique that can improve the differentiation between labor and pregnancy EHG signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.