Abstract

Inhalation of certain types of particulate matter can lead to lung disease. The reactivity of these particles and, in part, the pathologic responses that result are dictated by their physicochemical properties. The ability of particles to induce the generation of reactive oxygen species (ROS), especially hydroxyl radicals in vivo, is one property that has been correlated to the development of lung disease. Several minerals, such as quartz and asbestos, are known to generate hydroxyl radicals and cause lung disease, but many other minerals have never been tested. Here, we describe a technique employing yeast RNA as a probe to screen for mineral-generated hydroxyl radicals. The stability of RNA in the presence of hydrogen peroxide, ferrous iron, hydroxyl radicals, and several common minerals (quartz, albite, forsterite, fayalite, hematite, magnetite, coal, and pyrite) was examined. 3'-(p-Aminophenyl) fluorescein (APF) was used to verify mineral generation of ROS. RNA is stable in the presence of hydrogen peroxide, quartz, and albite; while it degrades in the presence of ferrous iron, hydroxyl radicals, and the other minerals. Coal and pyrite are the most reactive both in RNA degradation and hydroxyl radical generation. This noncellular technique provides a straightforward way to compare many different particles simultaneously. Those particles showing reactivity toward RNA using this method are high-priority candidates for further in vitro and possibly in vivo tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call