Abstract

Write-invalidate protocols suffer from memory-access penalties due to coherence misses. While write-update or hybrid update/invalidate protocols can reduce coherence misses, the update traffic can increase memory-system contention. We show in this paper that update-based cache protocols can perform significantly better than write-invalidate protocols by incorporating a write cache in each processing node. Because it is legal to delay the propagation of modifications of a block until the next synchronization under relaxed memory consistency models, a write cache can significantly reduce traffic by exploiting locality in write accesses. By concentrating on a cache-coherent NUMA architecture, we study the implementation aspects of augmenting a write-invalidate, a write-update and two hybrid update/invalidate protocols with write caches. Through detailed architectural simulations using five benchmark programs, we find that write caches, with only a few blocks each, help write-invalidate protocols to cut the false-sharing miss rate and hybrid update/invalidate protocols to keep other copies, including the memory copy, clean at an acceptable write traffic level. Overall, the memory-access penalty associated with coherence misses is drastically reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call