Abstract
In smart electric grid systems, various sensors and Internet of Things (IoT) devices are used to collect electrical data at substations. In a traditional system, a multitude of energy-related data from substations needs to be migrated to central storage, such as Cloud or edge devices, for knowledge extraction that might impose severe data misuse, data manipulation, or privacy leakage. This motivates to propose anomaly detection system to detect threats and Federated Learning to resolve the issues of data silos and privacy of data. In this article, we present a framework to identify anomalies in industrial data that are gathered from the remote terminal devices deployed at the substations in the smart electric grid system. The anomaly detection system is based on Long Short-Term Memory (LSTM) and autoencoders that employs Mean Standard Deviation (MSD) and Median Absolute Deviation (MAD) approaches for detecting anomalies. We deploy Federated Learning (FL) to preserve the privacy of the data generated by the substations. FL enables energy providers to train shared AI models cooperatively without disclosing the data to the server. In order to further enhance the security and privacy properties of the proposed framework, we implemented homomorphic encryption based on the Paillier algorithm for preserving data privacy. The proposed security model performs better with MSD approach using HE-128 bit key providing 97% F1-score and 98% accuracy for K=5 with low computation overhead as compared with HE-256 bit key.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.