Abstract
Political scientists often wish to classify documents based on their content to measure variables, such as the ideology of political speeches or whether documents describe a Militarized Interstate Dispute. Simple classifiers often serve well in these tasks. However, if words occurring early in a document alter the meaning of words occurring later in the document, using a more complicated model that can incorporate these time-dependent relationships can increase classification accuracy. Long short-term memory (LSTM) models are a type of neural network model designed to work with data that contains time dependencies. We investigate the conditions under which these models are useful for political science text classification tasks with applications to Chinese social media posts as well as US newspaper articles. We also provide guidance for the use of LSTM models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.