Abstract

In the first attempt to introduce gauge theories in physics, Hermann Weyl, around the 1920s, proposed certain scale transformations to be a fundamental symmetry of nature. Despite the intense use of Weyl symmetry that has been made over the decades, in various theoretical settings, this idea never found its way to the laboratory. Recently, building-up from work by Lochlainn O'Raifeartaigh and collaborators on the Weyl-gauge symmetry, applications of Weyl-symmetry to the electronic properties of graphene have been put forward, first, in a theoretical setting, and later, in an experimental proposal. Here I review those results, by enlarging and deepening the discussion of certain aspects, and by pointing to the steps necessary to make graphene a testing ground of fundamental ideas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.