Abstract

Nanopores are critical for the durability of cement-based materials, but the refinement of these pores by SCMs is yet to have a clear understanding. This paper studied effects of the water–binder ratio, SCMs and the drying on the distribution of nanopores using water vapour and N2 sorption isotherms. Results show that data of water vapour sorption can be used for a practical evaluation of the hydration degree of SCMs with thermodynamic simulation. Fly ash increases the volume of large gel and capillary pores. It lowers the difference between the sorption of water vapour and N2. Slag evidently refines the nanopores by increasing the volume of ink-bottle gel pores with an interlayer-size neck. A higher w/b produces more large pores to reduce the effect of drying. Removal of water induces contraction of interlayer and reduces gel pores volume, which causes large difference between sorption of water vapour and N2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call