Abstract

We study the problem of generating efficient, equivalent rewritings using views to compute the answer to a query. We take the closed-world assumption, in which views are materialized from base relations, rather than views describing sources in terms of abstract predicates, as is common when the open-world assumption is used. In the closed-world model, there can be an infinite number of different rewritings that compute the same answer, yet have quite different performance. Query optimizers take a logical plan (a rewriting of the query) as an input, and generate efficient physical plans to compute the answer. Thus our goal is to generate a small subset of the possible logical plans without missing an optimal physical plan. We first consider a cost model that counts the number of subgoals in a physical plan, and show a search space that is guaranteed to include an optimal rewriting, if the query has a rewriting in terms of the views. We also develop an efficient algorithm for finding rewritings with the minimum number of subgoals. We then consider a cost model that counts the sizes of intermediate relations of a physical plan, without dropping any attributes, and give a search space for finding optimal rewritings. Our final cost model allows attributes to be dropped in intermediate relations. We show that, by careful variable renaming, it is possible to do better than the standard “supplementary relation” approach, by dropping attributes that the latter approach would retain. Experiments show that our algorithm of generating optimal rewritings has good efficiency and scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.