Abstract

Traditionally, characterization of spectral information for wide sense stationary processes has been addressed by identifying a single best spectral estimator from a given family. If one were to observe significant variability in neighboring spectral estimators then the level of confidence in the chosen estimator would naturally be lessened. Such variability naturally occurs in the case of a mixed random process, since the influence of the point spectrum in a spectral density characterization arises in the form of approximations of Dirac delta functions. In this work we investigate the nature of the variability of the point spectrum related to three families of spectral estimators: Fourier transform of the truncated unbiased correlation estimator, the truncated periodogram, and the autoregressive estimator. We show that tones are a significant source of bias and variability. This is done in the context of Dirichlet and Fejer kernels, and with respect to order rates. We offer some expressions for estimating statistical and arithmetic variability. Finally, we include an example concerning helicopter vibration. These results are especially pertinent to mechanical systems settings wherein harmonic content is prevalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.