Abstract
Temperate zone deciduous tree phenology may be vulnerable to projected temperature change, and associated geographical impact is of concern to ecologists. Although many phenology models have been introduced to evaluate climate change impact, there has been little attempt to show the spatial variation across a geographical region due to contamination by the urban heat island (UHI) effect as well as the insufficient spatial resolution of temperature data. We present a practical method for assessing climate change impact on tree phenology at spatial scales sufficient to accommodate the UHI effect. A thermal time-based two-step phenological model was adapted to simulate and project flowering dates of Japanese cherry (Prunus serrulata var. spontanea) in South Korea under the changing climates. The model consists of two sequential periods: the rest period described by chilling requirements and the forcing period described by heating requirements. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree at the Seoul station of the Korea Meteorological Administration (KMA), along with daily temperature data for 1923–1948. The model was validated using the observed data at 18 locations across South Korea during 1955–2004 with a root mean square error of 5.1 days. This model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological normal years 1941–1970 and 1971–2000 based on observations at 56 KMA stations and a geospatial interpolation scheme for correcting urban heat island effect as well as elevation effect. We obtained a 25 km-resolution, 2011–2100 temperature projection data set covering peninsular Korea under the auspices of the Inter-governmental Panel on Climate Change—Special Report on Emission Scenarios A2 from the Meteorological Research Institute of KMA. The data set was converted to 270 m gridded data for the climatological years 2011–2040, 2041–2070 and 2071–2100. The phenology model was run by the gridded daily maximum and minimum temperature data sets, each representing climatological normal years for 1941–1970, 1971–2000, 2011–2040, 2041–2070, and 2071–2100. According to the model calculation, the spatially averaged flowering date for the 1971–2000 normal is earlier than that for 1941–1970 by 5.2 days. Compared with the current normal (1971–2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011–2040, 2041–2070, and 2071–2100, respectively. Southern coastal areas might experience springs with incomplete or even no flowering caused by insufficient chilling required for breaking bud dormancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.