Abstract

Stay-green (SG) in wheat is a beneficial trait that increases yield and stress tolerance. However, conventional phenotyping techniques limited the understanding of its genetic basis. Spectral indices (SIs) as non-destructive tools to evaluate crop temporal senescence provide an alternative strategy. Here, we applied SIs to monitor the senescence dynamics of 565 diverse wheat accessions from anthesis to maturation stages over 2 field seasons. Four SIs (normalized difference vegetation index, green normalized difference vegetation index, normalized difference red edge index, and optimized soil-adjusted vegetation index) were normalized to develop relative stay-green scores (RSGS) as the SG indicators. An RSGS-based genome-wide association study identified 47 high-confidence quantitative trait loci (QTL) harboring 3,079 single-nucleotide polymorphisms associated with SG and 1,085 corresponding candidate genes. Among them, 15 QTL overlapped or were adjacent to known SG-related QTL/genes, while the remaining QTL were novel. Notably, a set of favorable haplotypes of SG-related candidate genes such as TraesCS2A03G1081100, TracesCS6B03G0356400, and TracesCS2B03G1299500 are increasing following the Green Revolution, further validating the feasibility of the pipeline. This study provided a valuable reference for further quantitative SG and genetic research in diverse wheat panels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.