Abstract
In C₃ leaves, the mesophyll conductance to CO₂ diffusion, g(m) , determines the drawdown in CO₂ concentration from intercellular airspace to the chloroplast stroma. Both g(m) and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of g(m) to changes in CO₂ in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO₂ calibration system specially designed for a range of CO₂ and O₂ concentrations. CO₂ was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O₂ a step increase from 200 to 1000 ppm significantly decreased g(m) by 26-40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26-38% increase in g(m) was not statistically significant. The response of g(m) to CO₂ was less in 21% O₂. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO₂. We discuss the effects of isotope fractionation factors on estimating g(m) .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have