Abstract
A sufficient amount of data is crucial for high-performance and accurate trend prediction. However, it is difficult and time-consuming to collect agricultural data over long periods of time; the consequence of such difficulty is datasets that are characterized by missing data. In this study we use a time-series generative adversarial network (TimeGAN) to synthesize multivariate agricultural sensing data and train RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit) neural network prediction models on the original and generated data to predict future pest populations. After our experiment, the data generated using TimeGAN and the original data have the smallest EC value in the GRU model, which is 9.86. The results show that the generative model effectively synthesizes multivariate agricultural sensing data and can be used to make up for the lack of actual data. The pest prediction model trained on synthetic data using time-series data generation yields results that are similar to that of the model trained on actual data. Accurate prediction of pest populations would represent a breakthrough in allowing for accurate and timely pest control.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have