Abstract

Introduction. The open surface of evaporation of hydrocarbon liquids during their storage in tanks (reservoirs) and in case of emergency spills are the fire hazards characterized by the mass rate of evaporation. The main way to reduce the fire hazard of hydrocarbon liquids is to isolate the evaporation surface of hydrocarbon liquids using various coatings, such as pontoons or floating roofs in tanks (reservoirs), and in case of emergency spills air-filled foam can be used, etc. An effective way to reduce the evaporation of hydrocarbon liquids is to isolate the evaporation surface using light slightly hygroscopic granular materials capable of being retained on the liquid surface by the Archimedean force. The authors address the analytical-experimental evaluation of a decrease in the mass rate of evaporation of hydrocarbon liquids when a layer of granulated foam glass shields the spill surface.Calculation methodology and results. A mathematical model has been developed to describe a reduction in the evaporation rate of hydrocarbon liquids through a “dry” layer of granulated foam glass, similar to the Bouguer – Lambert – Beer law. A method of experimental evaluation of the mass evaporation rate of hydrocarbon liquids through a shielding layer of granulated foam glass of different height has been developed. Screening coefficients for a number of hydrocarbon liquids and the averaged screening coefficient were identified using the results of an experimental research into parameters of evaporation of flammable liquids (acetone, gasoline AI-92, hexane, ethanol, kerosene, diesel fuel) through a “dry” layer of granulated foam glass of the Termoisol brand (fraction 5–7 mm) obtained using the methodology developed by the authors. Dependences between the rates of liquid evaporation through different thicknesses of a “dry” layer of granulated foam glass on the pressure of saturated vapours have been established. The area height, limited by the bottom concentration limit of the vapour flame, spreading during the evaporation of tested liquids from the free surface that may also have a shielding layer of Termoizol granulated foam glass is estimated analytically and experimentally.Conclusions. The developed mathematical model and the method of experimental estimation of the mass evaporation rate of hydrocarbon liquids allows to identify the evaporation rate of hydrocarbon liquids of different classes, and it can be used to study the parameters of evaporation shielded by materials having different granulo metric compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.