Abstract

Experimental and theoretical study was conducted on liquid evaporation from free interface when the liquid is placed into an enclosed tank and subjected to vacuum and sonic exposure. A mathematical model was developed describing the influence of sonic exposure and gas pressure on the liquid temperature and evaporation rate. The experimental program and methods were designed; experimental setup was constructed, the test jobs were accomplished. The experiments were based on a piezoceramic transmitter with assigned frequency and amplitude of sonic oscillations. Distilled water was chosen as working fluid. The paper presents experimental dependency of the liquid temperature variation and calculated evaporation rate for situations of composite sonic and vacuum exposure or separate influence of every factor. Comparison of calculated and experimental value of liquid temperature while evaporation demonstrated the compliance with 10% accuracy. The research presents the regression analysis for the factor impacting the liquid evaporation rate: pressure inside the vacuum chamber and power of sonic exposure. The regression equation was derived for estimating the impact of sonic and vacuum exposure on the liquid evaporation rate during experiments at different pressures and liquid mass. The suggestions for further studies were formulated as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.