Abstract

Atmospheric deposition of large-scale lead pollution has occurred for at least 3000 years in Europe. Metal production and smelting were the main sources until the twentieth century when emissions from vehicles using alkyl-leaded petrol became dominant. Analyses of lake-sediment and peat deposits in Sweden and other regions in Europe, as well as ice cores from Greenland, suggest synchronous temporal changes in past pollution deposition. Characteristic features in the atmospheric pollution fallout were caused by: the peak in lead pro duction during the Roman period; the marked Mediaeval increase in mining and metal production; the rapidly increasing use of cars and leaded gasoline after the second world war along with increased industrial emissions until around 1970, which was followed by a major improvement due to environmental legislation. For northern Europe at least, these characteristic changes can be used to determine, with reasonable accuracy, at which levels ad 0, ad 1000–1200 and ad 1970 are situated in lake-sediment deposits. To identify these levels, stable lead isotope analyses (206Pb/207Pb ratios) have proven to be very useful besides concentration determinations. Particularly useful are the isotope analyses in areas, such as Sweden, where the differences in 206Pb/207Pb ratios are large between the natural catchment lead and the pollution lead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.