Abstract

AbstractAbandoned river channels on alluvial floodplains represent areas where sediments, organic matter, and pollutants preferentially accumulate during overbank flooding. Theoretical models describing sedimentation in floodplain lakes recognize the different stages in their evolution, where the threshold for hydrological connectivity increases in older lakes as a plug‐bar develops. Sedimentary archives collected from floodplain lakes are widely used to reconstruct ecological and hydrological dynamics in riverine settings, but how floodplain lake evolution influences flow velocities and sedimentation patterns on an event scale remains poorly understood. Here we combine sediment samples collected in and around a floodplain lake with hydraulic modelling simulations to examine inundation, flow velocity, and sedimentation patterns in a floodplain lake along the Trinity River at Liberty, Texas. We focus our analyses on an extreme flood event associated with the landfall of Hurricane Harvey in August 2017 and develop a series of alternative lake bathymetries to examine the influence of floodplain lake evolution on flow velocity patterns during the flood. We find that sediments deposited in the lake after the Hurricane Harvey flood become thinner and finer with distance from the tie‐channel in accordance with simulated flow velocities that drop with distance from the tie‐channel. Flow velocity simulations from model runs with alternative plug‐bar geometries and lake depths imply that sedimentation patterns will shift as the lake evolves and infills. The integration of sediment sampling and hydraulic model simulations provides a method to understand the processes that govern sedimentation in floodplain lakes during flood events that will improve interpretations of individual events in sedimentary archives from these contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.