Abstract

During the machining of free-form surfaces using three-axis numerically controlled machine (NC), several parameters are chosen arbitrary and one of the most important is the feed motion direction. The main objective of this study is to minimise the machining time of complex surfaces while respecting a scallop height criteria. The analytical expression of the machining time is not known and by hypothesis, it is assumed to be proportional to the path length crossed by the cutting tool. This path length depends on the feed direction. To have an optimal feed direction at any point, the surface is divided into zones with low variation of the steepest slope direction. The optimization problem was formulated aiming at minimizing the global path length. Furthermore, a penalty reflecting the time loss due to the movement of the tool from one zone to another one is taken into account. Several heuristics are used to resolve this problem: Clarke and Wrights, Greedy randomized adaptive search procedure, Tabu search and Nearest neighbour search. An example illustrates our work by applying the different heuristics on a test surface. After simulations, the results obtained present a significant saving of paths length of 24% compared to the machining in one zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.