Abstract

Machining of free-form surfaces has an important role in industrial manufacturing, but conventional tool-path generation strategies for free-form surfaces machining have the drawbacks of serious flattening distortion and poor tool-path continuity. Therefore, a novel method is developed to generate a spiral tool path for the machining of free-form surfaces by improving surface-flattening distortion and tool-path continuity. First, physical shell mapping is presented to flatten a free-form surface into a plane, which takes stretching energy, bending energy, and global energy into account. Then, the spatial spiral polyline is rounded to generate a spiral path by proposing reverse-compensation optimisation. Therefore, the free-form surfaces can be quickly flattened with less distortion, remaining free of overlap, and can in addition be machined at high speed along a C2 continuous spiral tool path. Further, the flattening error, tool-path length, mean curvature, mean scallop-height error of the spiral path, machining time and surface roughness are obviously reduced. Finally, simulation results are given to show the effectiveness and feasibility of the presented strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call