Abstract
In the present paper, the delayed feedback control is applied to suppress or stabilize the vibration of the primary system in a two degree-of-freedom dynamical system with parametrically excited pendulum. The case of a 1:2 internal resonance between pendulum and primary system is studied. The method of multiple scales is applied to obtain second-order approximations of the response of the system. The system stability and bifurcations of equilibrium point of the averaged equations are computed. It is shown that the delayed feedback control can be used to suppress the vibration or stabilize the system when the saturation control is invalid. The vibration of the primary system can be suppressed by the delayed feedback control when the original system is in the single-mode motion. The effect of gain and delay on the vibration suppression is discussed. As the delay varies at a fixed value of the gain, the vibration of the primary system can be suppressed at some values of the delay. The vibration suppression performance of the system is improved at a large value of the gain. The vibration of the primary system could be suppressed about 56% compared with the original system by choosing the appropriate values of gain and delay. The delayed feedback control also can be used to stabilize the system when the original system is unstable. The gain and delay could be chosen as the controlling parameters. Numerical simulation is agreement with the analytical solutions well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have