Abstract
Protein solubility plays a major role and has strong implication in the proteomics. Predicting the propensity of a protein to be soluble or to form inclusion body is a fundamental and not fairly resolved problem. In order to predict the protein solubility, almost 10,000 protein sequences were downloaded from NCBI. Then the sequences were eliminated for the high homologous similarity by CD-HIT. Thus, there were 5692 sequences remained. Based on protein sequences, amino acid and dipeptide compositions were generally extracted to predict protein solubility. In this study, the entropy in information theory was introduced as another predictive factor in the model. Experiments involving nine different feature vector combinations, including the above-mentioned three kinds of factors, were conducted with support vector machines (SVMs) as prediction engine. Each combination was evaluated by re-substitution test and 10-fold cross-validation test. According to the evaluation results, the accuracies and Matthew's Correlation Coefficient (MCC) values were boosted by the introduction of the entropy. The best combination was the one with amino acid, dipeptide compositions and their entropies. Its accuracy reached 90.34% and Matthew's Correlation Coefficient (MCC) value was 0.7494 in re-substitution test, while 88.12% and 0.7945 respectively for 10-fold cross-validation. In conclusion, the introduction of the entropy significantly improved the performance of the predictive method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.