Abstract

Taking the Jiefangzha irrigation area of the Inner Mongolia Autonomous Region as the research area, the response relationships between the backscattering coefficient and radar frequency, radar incidence angle, root-mean-square height, correlation length, and soil water content under different conditions were simulated using advanced integral equations. The backscattering characteristics of exposed surfaces in cold and dry irrigation areas were discussed, and the reasons for the different effects were analyzed. Based on this, surface roughness models and statistical regression moisture inversion models were constructed through co-polarized backscatter coefficients and combined surface roughness. The correlation between the inverted surface roughness values and the measured values was R2 = 0.7569. The correlation between the soil moisture simulation values and the measured values was R2 = 0.8501, with an RMSE of 0.04. The findings showed a strong correlation between the values from the regression simulation and the measured data, indicating that the model can be applied to soil moisture inversion and has a good inversion accuracy. Compared with previous studies in the same area, the inversion model proposed in this paper has a higher accuracy and is more suitable for the inversion of soil moisture in the Jiefangzha irrigation area. These findings can support research on the water cycle and water environment assessment in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call