Abstract

AbstractStochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to optimize large‐scale water resources systems while explicitly considering uncertainty. This paper explores the consequences of, and proposes a solution to, the existence of multiple near‐optimal solutions (MNOS) when using SDDP for mid or long‐term river basin management. These issues arise when the optimization problem cannot be properly parametrized due to poorly defined and/or unavailable data sets. This work shows that when MNOS exists, (1) SDDP explores more than one solution trajectory in the same run, suggesting different decisions in distinct simulation years even for the same point in the state‐space, and (2) SDDP is shown to be very sensitive to even minimal variations of the problem setting, e.g., initial conditions—we call this “algorithmic chaos.” Results that exhibit such sensitivity are difficult to interpret. This work proposes a reoptimization method, which simulates system decisions by periodically applying cuts from one given year from the SDDP run. Simulation results obtained through this reoptimization approach are steady state solutions, meaning that their probability distributions are stable from year to year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.