Abstract

Static biomechanical simulations are sometimes used to estimate in vivo kinetic demands because they can be solved efficiently, but this ignores any potential inertial effects. To date, comparisons between static and dynamic analyses of spinal demands have been limited to lumbar joint differences in young males performing sagittal lifts. Here we compare static and dynamic vertebral compressive and shear force estimates during axial, lateral, and sagittal lifting tasks across all thoracic and lumbar vertebrae in older men and women. Participant-specific thoracolumbar full-body musculoskeletal models estimated vertebral forces from recorded kinematics both with and without consideration of dynamic effects, at an identified frame of peak vertebral loading. Static analyses under-predicted dynamic compressive and resultant shear forces, by an average of about 16% for all three lifts across the thoracic and lumbar spine but were highly correlated with dynamic forces (average r2 > .95). The study outcomes have the potential to enable standard clinical and occupational estimates using static analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call