Abstract

This work develops a hybrid analytical-computational (HAC) method for nonlinear dynamic response in spur gear pairs. The formulation adopts a contact model developed in (Eritenel, T., and Parker, R. G., 2013, “Nonlinear Vibration of Gears With Tooth Surface Modifications,” ASME J. Vib. Acoust., 135(5), p. 051005) where the dynamic force at the mating gear teeth is determined from precalculated static results based on the instantaneous mesh deflection and position in the mesh cycle. The HAC method merges this calculation of the contact force based on an underlying finite element static analysis into a numerical integration of an analytical vibration model. The gear translational and rotational vibrations are calculated from a lumped-parameter analytical model where the crucial dynamic mesh force is calculated using a force-deflection function (FDF) that is generated from a series of static finite element analyses performed before the dynamic calculations. Incomplete tooth contact and partial contact loss are captured by the static finite element analyses and included in the FDF, as are tooth modifications. In contrast to typical lumped-parameter models elastic deformations of the gear teeth, including the tooth root strains and contact stresses, are calculated. Accelerating gears and transient situations can be analyzed. Comparisons with finite element calculations and available experiments validate the HAC model in predicting the dynamic response of spur gear pairs, including for resonant gear speeds when high amplitude vibrations are excited and contact loss occurs. The HAC model is five orders of magnitude faster than the underlying finite element code with almost no loss of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.