Abstract

Groundwater is an indispensable freshwater resource and its quality is significant in supporting sustainable social and economic development, particularly in estuarine islands where aquifers are complicated. In this study, a total of 19 groundwater and 4 surface water samples were collected in September 2022 to identify the origin and hydrogeochemical evolution processes of groundwater using stable isotopes and hydrochemistry in Chongming Island, which is the largest estuarine alluvial island in the world. The stable isotopic composition indicated that shallow groundwater and surface water are all derived from precipitation recharge under a humid climate, and the evaporative effect incurs the enrichment of isotopic compositions. The shallow groundwater and surface water were primarily of Ca-HCO3 type. Gibbs diagram, ionic correlation analysis, ionic ratios analysis, and mineral saturation indices suggested that water-rock interactions like carbonate and silicate weathering play a vital role in groundwater chemistry, but cation exchange reactions are weak. Revelle index (RI) result indicated that 10.5% of shallow groundwater samples were found to suffer seawater intrusion. The NO3- concentrations were between l2.0 and 180.8mg/L with 31.6% of groundwater samples exceeding the World health organization (WHO) standards (50mg/L). Agricultural activities and industrial activities were found to be mainly responsible for groundwater pollution in shallow groundwater. The findings of this study provide a scientific basis for better managing groundwater resources on coastal estuarine islands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call