Abstract
AbstractMuskellunge (Esox masquinongy Mitchill), northern pike (Esox lucius L.) and walleye (Sander vitreus Mitchill) often coexist in lake communities, yet uncertainty exists about the potential for interspecific competition among these top predators. Stable isotope data were used to assess niche overlap and diets of these predators in Elk Lake (Minnesota, U.S.A). δ13C indicated primary production sources (e.g. pelagic v. littoral) and δ15N indicated trophic position; the bivariate distribution of these isotopes defined the species’ isotopic niche. Niche overlap probabilities were calculated and stable isotope mixing models were used to quantify diet proportions. Muskellunge and northern pike niches overlapped little (<10%), while walleye overlapped muskellunge (15%–60%) and northern pike (33%–53%) more extensively. Muskellunge diets focused (50%) on cisco (Coregonus artedi Lesueur), walleye primarily assimilated non‐cisco prey fish (80%), and northern pike diets were dominated by non‐cisco prey fish (45%) and invertebrates (40%). The presence of a cisco population and the flexibility of northern pike to use invertebrate resources may decrease potential competition among these predators. However, cisco are threatened by climate change and eutrophication, and our results suggest that extirpation of cisco may cause major changes in potential competitive interactions among these top predators. Moreover, cisco were unique among prey species in their ability to exploit pelagic energy, such that loss of cisco will likely alter energy flow in lake food webs where they currently exist.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have