Abstract

BackgroundPedestrian-friendly neighborhoods with proximal destinations and services encourage walking and decrease car dependence, thereby contributing to more active and healthier communities. Proximity to key destinations and services is an important aspect of the urban design decision making process, particularly in areas adopting a transit-oriented development (TOD) approach to urban planning, whereby densification occurs within walking distance of transit nodes. Modeling destination access within neighborhoods has been limited to circular catchment buffers or more sophisticated network-buffers generated using geoprocessing routines within geographical information systems (GIS). Both circular and network-buffer catchment methods are problematic. Circular catchment models do not account for street networks, thus do not allow exploratory ‘what-if’ scenario modeling; and network-buffering functionality typically exists within proprietary GIS software, which can be costly and requires a high level of expertise to operate.MethodsThis study sought to overcome these limitations by developing an open-source simple agent-based walkable catchment tool that can be used by researchers, urban designers, planners, and policy makers to test scenarios for improving neighborhood walkable catchments. A simplified version of an agent-based model was ported to a vector-based open source GIS web tool using data derived from the Australian Urban Research Infrastructure Network (AURIN). The tool was developed and tested with end-user stakeholder working group input.ResultsThe resulting model has proven to be effective and flexible, allowing stakeholders to assess and optimize the walkability of neighborhood catchments around actual or potential nodes of interest (e.g., schools, public transport stops). Users can derive a range of metrics to compare different scenarios modeled. These include: catchment area versus circular buffer ratios; mean number of streets crossed; and modeling of different walking speeds and wait time at intersections.ConclusionsThe tool has the capacity to influence planning and public health advocacy and practice, and by using open-access source software, it is available for use locally and internationally. There is also scope to extend this version of the tool from a simple to a complex model, which includes agents (i.e., simulated pedestrians) ‘learning’ and incorporating other environmental attributes that enhance walkability (e.g., residential density, mixed land use, traffic volume).

Highlights

  • Pedestrian-friendly neighborhoods with proximal destinations and services encourage walking and decrease car dependence, thereby contributing to more active and healthier communities

  • The aim of the project was to demonstrate the benefit of providing open access government datasets to researchers, planners and policy makers to deal with problems of space, place, and liveability in the North West Metropolitan region of Melbourne (Victoria, Australia)

  • Model development The initial development of the basic agent-based walkable network tool was informed by the health and place-based literature, and earlier related research undertaken by the investigators that applied and tested the walkability index with various health outcomes [9,30,31], along with a working ‘Ped-Catch’ prototype tool [32,33]

Read more

Summary

Introduction

Pedestrian-friendly neighborhoods with proximal destinations and services encourage walking and decrease car dependence, thereby contributing to more active and healthier communities. Modeling destination access within neighborhoods has been limited to circular catchment buffers or more sophisticated network-buffers generated using geoprocessing routines within geographical information systems (GIS). Both circular and network-buffer catchment methods are problematic. A growing body of evidence demonstrates pedestrian-friendly neighborhoods encourage walking for both recreation and transport [1,2]. This is important, since physical inactivity is the fourth leading contributor to the burden of disease globally [3] and increasing physical activity is an international priority [4]. The relative inflexibility of the walkability index (i.e., derived using static data sources) means that it has been primarily limited to assessing the ‘walkability’ of existing environments and the street connectivity component is more suited to regional-scaled analysis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.