Abstract

Tools to evaluate reservoir thermal energy storage (RTES; heat storage in slow-moving or stagnant geochemically evolved permeable zones in strata that underlie well-connected regional aquifers) are developed and applied to the Columbia River Basalt Group (CRBG) beneath the Portland Basin, Oregon, USA. The performance of RTES for heat storage and recovery in the Portland Basin is strongly dependent on the operational schedule of heat injection and extraction. We examined the effects of the operational schedule, based on an annual solar hot water supply pattern and a building heating demand model, using heat and fluid flow simulations with SUTRA. We show RTES to be feasible for supply of heating energy for a large combined research/teaching building on the Oregon Health and Science University South Waterfront expansion, an area of planned future development. Initially, heat is consumed to increase the reservoir temperature, and conductive heat loss is high due to high temperature gradients between the reservoir and surrounding rock. Conductive heat loss continues into the future, but the rate of heat loss decreases, and heat recovery efficiency of the RTES system increases over time. Simulations demonstrate the effects of varying heat-delivery rate and temperature on the heat production history of the reservoir. If 100% of building heating needs are to be supplied by combined solar/RTES, then the solar system must be sized to meet building needs plus long-term thermal losses (i.e., conductive losses once the system is heated to pseudo-steady state) from the RTES system. If the solar heating system barely meets these criteria, then during early years, less than 100% of the building demand will be supplied until the reservoir is fully-heated. The duration of supplying less than 100% of building demand can be greatly shortened by pre-heating the reservoir before building heating operations or by adding extra heat from external sources during early years. Analytic solutions are developed to evaluate efficacy and to help design RTES systems (e.g., well-spacing, thermal source sizing, etc.). A map of thermal energy storage capacity is produced for the CRBG beneath the Portland Basin. The simulated building has an annual heat load of ∼1.9 GWh, and the total annual storage capacity of the Portland Basin is estimated to be 43,400 GWh assuming seasonal storage of heat yields water from which 10 °C can be extracted via heat exchange, indicating a tremendous heating capacity of the CRBG.

Highlights

  • Storage of thermal energy in saline or brackish aquifers underlying freshwater aquifers allows use of largely undeveloped relatively lowquality groundwater-resources for matching of peak energy production with peak energy demand

  • Variation of thermal conductivity of geologic strata, uncertainty in geothermal heat flow, and temperature-dependent density and viscosity effects were all shown to be negligible for this thin reservoir

  • Simulations indicated that rapid heat delivery from water within the reservoir was the largest fraction of heat supplied, but this heat was augmented slowly by conduction from overlying and underlying strata

Read more

Summary

Introduction

Storage of thermal energy in saline or brackish aquifers underlying freshwater aquifers allows use of largely undeveloped relatively lowquality groundwater-resources for matching of peak energy production with peak energy demand. In the case of direct-use geothermal heating (i.e., using the temperature of the geothermal water to heat or cool equipment or spaces), the energy injected, stored, and later extracted is delivered as hot or cold water. Summer solar energy might be stored in a heated reservoir and extracted in the winter. Winter low temperatures might be harvested (i.e., heat exchange with atmosphere or hydrosphere) for use during the summer.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.