Abstract
This study explores the Linyi geothermal field, located in Shandong Province, China, characterized by its non-magmatic, active fault-controlled geothermal system. Utilizing a combination of geochemical analyses, temperature measurements, and numerical simulations, a detailed genetic model of the geothermal system has been developed. The analysis included extensive water geochemical and isotopic characterization to determine reservoir temperature, depth, and origin of the geothermal waters. The thermal-hydro coupling model was integrated with these data to refine the thermal distribution and assess the evolutionary dynamics of the geothermal system. Our findings indicate that the geothermal anomalies in the Linyi field are predominantly controlled by hydrothermal convection within the Ordovician and Cambrian carbonate layers, facilitated by the high permeability of the Yishu Fault. The fault acts as a crucial conduit for meteoric water recharge, which undergoes significant heating due to the geothermal gradient in deeper rock formations. Isotopic analyses of hydrogen and oxygen revealed the meteoric origin of the geothermal waters, with recharge likely originating from the nearby Yimeng Mountains. Furthermore, the study established a conceptual evolutionary model to understand the mechanisms driving the geothermal resource development in the area. It was determined that the geothermal resources are typically fault-controlled, with significant potential for further exploration due to the identified hydrothermal anomalies at the fault's footwall. The model predicts the preservation of heated meteoric water in the reservoir rock for periods ranging from 10 to 50 thousand years, providing a sustainable source of geothermal energy. This comprehensive approach not only enhances the understanding of the heat accumulation mechanism but also highlights the potential for optimizing geothermal exploration strategies within fault-controlled geothermal systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.