Abstract

A dynamic, physical model was created to predict soil erosion of Lagawe River Sub-watershed, a sub-watershed of Magat River Watershed, Philippines. Tipping-bucket rain gauge was installed to gather event-based rainfall data and a water-level recorder was installed on a straight segment of Lagawe River to gather water depth. Sediment samples were taken during rainstorm events and were used to calibrate the model. Manning’s equation was used to calculate surface runoff and stream flow velocity. Rose’ and Freebairn’s Equation was used to calculate sediment mass. Geographic Information System was utilized as a tool for modelling using PCRaster Software. The model estimated a total of 57,905,000 m3 of eroded sediments which was generated during Typhoon Koppu (local name, Lando) in year 2015. A Welch Two Sample t-value of -0.25 and a p-value of 0.81 was achieved on the statistical analysis between the measured sediment yield and the output of the model. Since the p-value is greater than 0.05 (5%), there is no significant difference between the output of the physical dynamic model and the measured value for sediment yield. Likewise, the correlation analysis supports this conclusion with a linearly positive R2 value of 0.74.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.