Abstract

This paper uses rigid-body mechanism topologies to synthesize fully distributed compliant mechanisms that approximate a shape change defined by a set of morphing curves in different positions. For a shape-change problem, a rigid-body mechanism solution is generated first to provide the base topology. This base topology defines a preselected design space for the structural optimization in one of two ways so as to obtain a compliant mechanism solution that is typically superior to the local minimum solutions obtained from searching more expansive design spaces. In the first strategy, the dimensional synthesis directly determines the optimal size and shape of the distributed compliant mechanism having exactly the base topology. In the second strategy, an initial mesh network established from the base topology is used to generate different topologies (in addition to the base), and an improved design domain parameterization scheme ensures that only topologies with well-connected structures are evaluated. The deformation of each generated compliant mechanism is evaluated using geometrically nonlinear finite element analysis (FEA). A two-objective genetic algorithm (GA) is employed to find a group of viable designs that trade off minimizing shape matching error with minimizing maximum stress. The procedure's utility is demonstrated with three practical examples—the first two approximating open-curve profiles of an adaptive antenna and the third approximating closed-curve profiles of a morphing wing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.