Abstract

Although 6:2 fluorotelomer carboxylic acid (6:2 FTCA), which is one of the most popular substitutes for perfluorooctanoic acid (PFOA), has been widely distributed in environments, little is known about its biotransformation mechanism and phytotoxic effects in plants. Here, we showed that 6:2 FTCA could be taken up by pumpkin (Cucurbita maxima L.) roots from exposure solution and acropetally translocated to shoots. Biotransformation of 6:2 FTCA to different carbon chain perfluorocarboxylic acid (PFCA) metabolites (C2-C7) via α-and β-oxidation in pumpkin was observed, and perfluorohexanoic acid (PFHxA) was the major transformation product. The results of enzyme assays, enzyme inhibition experiments and gene expression analysis indicated that cytochrome P450 (CYP450), glutathione-S-transferase (GST) and ATP-binding cassette (ABC) transporters were involved in the metabolism of 6:2 FTCA in pumpkin. Plant-associated rhizobacteria and endophyte also contributed to 6:2 FTCA degradation through β-oxidation. The chlorophyll (Chl) content and genes involved in photosynthesis were significantly improved by 6:2 FTCA. The reductions of antioxidant and metabolic enzyme activities reflected the antioxidant defense system and detoxification system of pumpkin were both damaged, which were further confirmed by the down-regulating associated genes encoding phenylpropanoid biosynthesis, endoplasmic reticulum-related proteins, ascorbate-glutathione cycle and ABC transporters. This study is helpful to understand the environmental behaviors and toxicological molecular mechanisms of 6:2 FTCA in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call