Abstract

AbstractIn this paper, the aims were (a) to test the usefulness of using genomic and phenotypic information from public databases (open access) to predict genetic values for tropical maize inbred lines regarding plant and ear height; (b) to identify how the population structure, the use of optimized training sets (OTSs) and the amount of information originating from public databases affect the predictive ability. Thus, 29 training sets (TSs) were defined considering three diversity panels: the University of São Paulo (USP—validation set (VS)) and the ASSO and USDA North Central Regional Plant Introduction Station (NCRPIS) (external public panels—predictors), which were divided into four scenarios with different TS configurations. We showed that it is possible to use public datasets as a primary TS and that population structure can modify the predictive abilities of GS. In the four scenarios proposed, very large or very small sets did not provide predictive abilities over 0.53 for GS. However, OTSs composed of 250 individuals were sufficient to achieve predictive abilities over this limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.